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Chapter 1 :: Topics

 Background

e The Game Plan

 The Art of Managing Complexity
 The Digital Abstraction

e Number Systems

* Logic Gates

* Logic Levels

e CMOS Transistors

* Power Consumption
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Background

 Microprocessors have revolutionized our world

— Cell phones, Internet, rapid advances in medicine, etc.

e The semiconductor industry has grown from $21
billion in 1985 to $300 billion in 2011
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The Game Plan

e Purpose of course:
— Understand what’s under the hood of a computer
— Learn the principles of digital design

— Learn to systematically debug increasingly
complex designs

— Design and build a microprocessor
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The Art of Managing Complexity

e Abstraction

e Discipline

e The Three —y’s
— Hierarchy

— Modularity
— Regularity
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Abstraction
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Discipline

* Intentionally restrict design choices
o Example: Digital discipline

— Discrete voltages instead of continuous

— Simpler to design than analog circuits — can build more sophisticated
systems

— Digital systems replacing analog predecessors:
* I.e., digital cameras, digital television, cell phones,
CDs
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The Three -y’s

e Hierarchy
e Modularity

e Regularity
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e Hierarchy

— Asystem divided into modules and submodules

 Modularity

— Having well-defined functions and interfaces

e Regularity

— Encouraging uniformity, so modules can be easily reused
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Example: The Flintlock Rifle

e Hierarchy
— Three main modules:
lock, stock, and barrel

— Submodules of lock:
hammer, flint, frizzen,
etc.

Trigger
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Example: The Flintlock Rifle

e Modularity

— Function of stock: mount
barrel and lock

— Interface of stock: length
and location of mounting
pins

* Reqgularity

— Interchangeable parts

FROM ZERO TO ONE

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <11>

AR
ELSEVIE

R



The Digital Abstraction

 Most physical variables are continuous
— Voltage on a wire
— Frequency of an oscillation
— Position of a mass

e Digital abstraction considers discrete
subset of values
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 Designed by Charles
Babbage from 1834 —
1871

 Considered to be the
first digital computer

* Built from mechanical
gears, where each gear
represented a discrete
value (0-9)

 Babbage died before it
was finished
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FROM ZERO TO ONE

Digital Discipline: Binary Values

Two discrete values:
— 1’sand O’s

— 1, TRUE, HIGH

— 0, FALSE, LOW

1 and O: voltage levels, rotating gears, fluid
levels, etc.

Digital circuits use voltage levels to represent
1and O

Bit: Binary digit
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George Boole, 1815-1864

Born to working class parents

e Taught himself mathematics and
joined the faculty of Queen’s
College in Ireland

* Wrote An Investigation of the Laws
of Thought (1854)

 Introduced binary variables

e Introduced the three fundamental
logic operations: AND, OR, and
NOT

Scanned at the Amearican
Institute of Physics
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e Decimal numbers
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e Decimal numbers
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e Binary numbers
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¢« 20=1 o 28 =256

¢ 21=2 e 29 =512

¢ 22=4 o 210=1024
¢ 23=8 o 211 =2048
¢ 24=16 o 212=4096
¢« 22=32 o 213=8192
o 2°=64 e 214=16384
¢ 21 =128 o 215=32768
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e Handy to memorize up to 2°
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Number Conversion

e Decimal to binary conversion:
— Convert 10011, to decimal

e Decimal to binary conversion:

— Convert 47, to binary
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Number Conversion

e Decimal to binary conversion:

— Convert 10011, to decimal
— 16x1 + 8x0 +4x0 + 2x1 + 1x1 =19,

e Decimal to binary conversion:

— Convert 47, to binary
— 32x1+16x0 + 8x1 + 4x1 + 2x1 + 1x1 = 101111,
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FROM ZERO TO ONE

Binary Values and Range

e N-digit decimal number
— How many values?
— Range?
— Example: 3-digit decimal number:

e N-bit binary number
— How many values?
— Range:
— Example: 3-digit binary number:
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e N-digit decimal number

— How many values? 10"
— Range? [0, 10V -1]

e 103 =1000 possible values
e Range: [0, 999]

e N-bit binary number

— How many values? 2"
— Range: [0, 2V - 1]

e 23 = 8 possible values
e Range: [0, 7] =[000, to 111,]
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— Example: 3-digit decimal number:

— Example: 3-digit binary number:
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Hexadecimal Numbers

Hex Digit Decimal Equivalent Binary Equivalent
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Hexadecimal Numbers

Hex Digit Decimal Equivalent Binary Equivalent
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
15 1111
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Hexadecimal Numbers

e Base 16
« Shorthand for binary
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FROM ZERO TO ONE

Hexadecimal to Binary Conversion

» Hexadecimal to binary conversion.
— Convert 4AF; (also written 0x4AF) to binary

e Hexadecimal to decimal conversion:

— Convert Ox4AF to decimal
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Hexadecimal to Binary Conversion

» Hexadecimal to binary conversion.

— Convert 4AF, (also written 0x4AF) to binary
— 01001010 1111,

e Hexadecimal to decimal conversion:

— Convert 4AF,, to decimal
— 162x4 + 16!x10 + 16°x15 = 1199, ,
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Bits, Bytes, Ni

e Bits

 Bytes & Nibbles

* Bytes
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Large Powers of Two

e 210=1kilo -1000 (1024)
e 220=1mega -1 million (1,048,576)
e 230=1giga 1 billion(1,073,741,824)
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Estimating Powers of Two

e What is the value of 2%4?

e How many values can a 32-bit variable
represent?
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e What is the value of 2%4?
24 x 220 =~ 16 million

e How many values can a 32-bit variable
represent?

22 x 230 = 4 billion
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FROM ZERO TO ONE
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e Decimal

e Binary

3734
+ 5168

1011
+ 0011
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e Decimal

3734
+ 5168

8902

e Binary

1011
+ 0011

1110
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FROM ZERO TO ONE
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Binary Addition Examples

« Add the following
4-bit binary
numbers

« Add the following
4-bit binary
numbers

1001
+ 0101

1011
+ 0110

Chapter 1 <35>
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FROM ZERO TO ONE

Binary Addition Examples

* Add the following
4-bit binary
numbers

* Add the following
4-bit binary
numbers
Overflow!
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+ 0110
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 Digital systems operate on a fixed number of
bits

« Overflow: when result Is too big to fit in the
avallable number of bits

e See previous example of 11 + 6
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« Sign/Magnitude Numbers

FROM ZERO TO ONE
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* Two’s Complement Numbers
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FROM ZERO TO ONE

Sign/Magnitude Numbers

1 sign bit, A1 magnitude bits
Sign bit is the most significant (left-most) bit
— Positive number: sign bit=0 A {aN—liaN—Z’”'aZ’al’aO}
— Negative number: sign bit=1 n-2
g g A: (_1)an_1zai2|
=0

Example, 4-bit sign/mag representations of + 6:
+6 =
-6 =

Range of an A-bit sign/magnitude number:
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FROM ZERO TO ONE

Sign/Magnitude Numbers

1 sign bit, A1 magnitude bits
Sign bit is the most significant (left-most) bit
— Positive number: sign bit=0 A {aN—liaN—Z’”'aZ’al’aO}
— Negative number: sign bit=1 n-2
g g A: (_1)an_1zai2|
=0

Example, 4-bit sign/mag representations of + 6:
+6 = 0110
-6=1110

Range of an A-bit sign/magnitude number:
[_(2N-l_1), 2N-1_1]
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Sign/Magnitude Numbers

e Problems:
— Addition doesn’t work, for example -6 + 6:

1110
+ 0110
10100 (wrong!)

— Two representations of O (x 0):
1000

0000
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Two’s Complement Numbers

* Don’t have same problems as sign/magnitude

numbers:

— Addition works
— Single representation for 0
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FROM ZERO TO ONE

Two’s Complement Numbers

e Msb has value of -2/-1

e Most positive 4-bit number:
* Most negative 4-bit number:

* The most significant bit still indicates the sign
(1 = negative, 0 = positive)

« Range of an A-bit two’s comp number:
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FROM ZERO TO ONE

Two’s Complement Numbers

e Msb has value of -2/-1

e Most positive 4-bit number: 0111
e Most negative 4-bit number: 1000

* The most significant bit still indicates the sign
(1 = negative, 0 = positive)

« Range of an A-bit two’s comp number:
[_(2N-1)’ 2N-1_1]
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“Taking the Two’s Complement”

* Flip the sign of a two’s complement number

e Method:

1. Invert the bits
2. Add1l

» Example: Flip the sign of 3,, = 0011,

FROM ZERO TO ONE
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“Taking the Two’s Complement”

* Flip the sign of a two’s complement number

e Method:

1. Invert the bits
2. Add1l

» Example: Flip the sign of 3,, = 0011,
1. 1100
2. + 1
1101 = -3,

FROM ZERO TO ONE
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Two’s Complement Examples

» Take the two’s complement of 6,, = 0110,

» What is the decimal value of 1001,?
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Two’s Complement Examples

L

<

O -+ Take the two’s complement of 6,, = 0110,

\ 1. 1001

S

O 1010, = -6,

x

w * What Is the decimal value of the two’s
complement number 1001,?

S 1. 0110

O 2. + 1

&
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Two’s Complement Addition

=kl

2 -

O -+ Add6 + (-6) using two’s complement
@ numbers

- 0110

0 + 1010

S

N ¢ Add-2+ 3using two’s complement numbers
E 1110

8 + 0011

Ll
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Two’s Complement Addition

 Add6 + (-6) using two’s complement

numbers 111
0110

+ 1010
10000

e Add -2 + 3 using two’s complement numbers

111
1110

+ 0011

FROM ZERO TO ONE
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FROM ZERO TO ONE

Increasing Bit Width

Extend number from Nto Mbits M> N) -

— Sign-extension
— Zero-extension
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Sign-Extension

e Sign bit copied to msb’s
 Number value Is same

 Example 1:
— 4-bit representation of 3 = 0011
— 8-bit sign-extended value: 00000011

 Example 2:
— 4-bit representation of -5 = 1011
— 8-bit sign-extended value: 11111011
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/ero-Extension

e Zeros copled to msb’s
« \Value changes for negative numbers

 Example 1:
— 4-bitvalue = 0011, = 34,
— 8-bit zero-extended value: 00000011 = 3,,
 Example 2:
— 4-bit value = 1011 = -5,
—  8-bit zero-extended value: 00001011 = 11,,
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Number System Comparison

Number System  Range

Unsigned 0, 2V-1]

Sign/Magnitude -(2V1-1), 2M1-1]
Two’s Complement 2N 2N 1-1]

For example, 4-bit representation:

r - 1.1 1 1 1 1 T T T T T T T 1 1T T T T T T T 1
84 -/ 6 5 4 3 2 -1 0 1 2 3 4 5 6 ¢ 8 9 10 11 12 13 14 15

Unsigned 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 Two's Complement
0000 : .
1111 1110 1101 1100 1011 1010 1001 - = 0001 0010 0011 0100 0101 0110 0111 Sign/Magnitude
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FROM ZERO TO ONE

Logic Gates

* Perform logic functions:
— inversion (NOT), AND, OR, NAND, NOR, etc.

e Single-input:

— NOT gate, buffer
 Two-input:

— AND, OR, XOR, NAND, NOR, XNOR
 Multiple-input
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Single-Input Logic Gates

NOT BUF

FROM ZERO TO ONE

1

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <56> lEFL
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Single-Input Logic Gates
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Two-Input Logic Gates

AND OR
A A
D |

Y =AB Y=A+B

R O oOl>
RO O|lw
= = O oO|l>
 ORF O|lw
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AND

R O oOl>
R ORrR O|lw
R O O Ol
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More Two-lnput Logic Gates

XOR NAND NOR XNOR
A A A A
o) Y 81 Py a] v 5] v

Y=A®B Y = AB Y=A+B Y=A®B

A BI|Y A BI|Y A BI|Y A BI|Y

0 O 0 O 0 O 0 O

0 1 0 1 o 1 o 1

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1
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FROM ZERO TO ONE

More Two-lnput Logic Gates

O r R Ol

OR P R
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Multiple-Input Logic Gates

A B C|Y A B ClY
0 0 0 O O O
0 0] 1 O O 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1
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Multiple-Input Logic Gates

FRFFRRFRRFPOOOO|>
RPFRPOORRFR OO
RPORORORFROIN
olNololoNoNoRNok g
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e Multi-input XOR: Odd parity
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Logic Levels

e Discrete voltages represent 1 and 0

 For example:
— 0 = ground (GND) or 0 volts
— 1=V, or5volts

e What about 4.99 volts? IsthataOoral?
e What about 3.2 volts?
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 Range of voltages for 1 and O

e Different ranges for inputs and outputs to
allow for noise
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What is Noise?

FROM ZERO TO ONE
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 Anything that degrades the signal

— E.g., resistance, power supply noise, coupling
to neighboring wires, etc.

e Example: a gate (driver) outputs 5 V but,
because of resistance in a long wire,
receiver gets 4.5V

Noise
Driver \ Receiver

oV 4.5 V[ -
s -.&:
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The Static Discipline

e With logically valid inputs, every circuit
element must produce logically valid
outputs

e Use limited ranges of voltages to
represent discrete values
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Logic Levels

Driver Receiver

~ S

Output Characteristics Input Characteristics

Logic High i ic High
Output Range :_nopgllf[: RHzIagnge
V|H
V|L

V
Logic Low
Input Range

OH

Zone

VOL
Output Range
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Noise Margins

Driver

Receiver

4{

%

Output Characteristics Input Characteristics
DD
Logic High i #H o
Output Range y  [:i: Logic High
Vou ¢NMH i Input Range
Forbidden | V4
Zone Vv,
- Vo Logic Low
Logic Low i Input Range
Output Range
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NM, = V)

o VOL
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DC Transfer Characteristics

|deal Buffer: Real Buffer:
V(Y) R E y V(Y)

IIIII

V
VOH VDD N DD
VOH
Unity Gain
Points
VoL Slope =1
Vo, 0 —V(A) 0 —V(A)
Voo /2 Voo Vii Vi Voo
V,,V

NM,=NM, = V) 2 | | NM,,, NM, < V2
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V(Y)

VDD —

VOH
Unity Gain

Points
Vol Slope =1
0 I V(A)
IL IH VDD

Output Characteristics

DD

DC Transfer Characteristics

-

Input Characteristics

VOH

oL

iNM

Forbidden V
Zone '

GND

Chapter 1 <72>

ELSEVIER



* In1970’s and 1980’s, V=5V

e V, has dropped
— Avoid frying tiny transistors
— Save power

different supply voltages

smoke
Proof:

stops working

FROM ZERO TO ONE

© Digital Design and Computer Architecture, 2™ Edition, 2012

e 33V,25V,18V,15V,1.2V,1.0V, ..
e Be careful connecting chips with

Chips operate because they contain magic

— if the magic smoke is let out, the chip

Chapter 1 <73>
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Logic Family Examples

Logic Family | Vpp Vie Vi | Voo | Vou
TTL 5(4.75-5.25) (0.8 20 (04 |24
CMOS 5(4.5-6) 135 |3.15 |0.33 [3.84
LVTTL 3.3(3-3.6) 0.8 20 (04 |24
LVCMOS 3.3(3-3.6) 0.9 1.8 [0.36 |2.7
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FROM ZERO TO ONE

Transistors

 Logic gates built from transistors

 3-ported voltage-controlled switch

— 2 ports connected depending on voltage of 3rd
— d and s are connected (ON) when g is 1

g=0 g=1
d d d
g%i i\OFF i ON
S S S
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Robert Noyce, 1927-1990

* Nicknamed “Mayor of
Silicon Valley”

e Cofounded Fairchild
Semiconductor 1n 1957

e Cofounded Intel in 1968

e Co-invented the integrated
circuit

igital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <76> ELSEVIER



Silicon

 Transistors built from silicon, a semiconductor
 Pure silicon is a poor conductor (no free charges)

e Doped silicon is a good conductor (free charges)
— n-type (free regative charges, electrons)
p-type (free positive charges, holes)

FROM ZERO TO ONE

Free electron Free hole
Si Si Si —Si—Si_LSi— —Si—Si+ --Si—
Si — Si—Si Si —As— Si Si— B —Si
Si Si Si Si Si Si Si Si Si
Silicon Lattice n-Type p-Type
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MOS Transistors

* Metal oxide silicon (MOS) transistors:
— Polysilicon (used to be metal) gate
— Oxide (silicon dioxide) insulator
— Doped silicon

source gate drain

O Polysilicon
n n &

-

gate

1

source I L drain

FROM ZERO TO ONE

nMOS
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Transistors: nMQOS

Gate =0 Gate=1

OFF (no connection ON (channel between
between source and source and drain)
drain)

source drain source gate drain

o e 0O O TVDD O

GND ¢GND

FROM ZERO TO ONE
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Transistors: pMOS

e pMOS transistor is opposite
— ONwhen Gate=0
— OFF when Gate =1

source gate drain

Polysilicon O Cf O

SiOZ\\

nt

gate

e

source I L drain
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Transistor Function

d
nMOS g [ ? OFF
S

S
pMOS g_qE i ON
d

FROM ZERO TO ONE
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Transistor Function

Ly
O e nMOS: pass good O’s, so connect source to
0 GND
f~ e pMOS: pass good 1’s, so connect source to
O Voo ——
5 pcs
network
N inputs | Y
S + output
| / ~
8
! network
Ty . )

i i B i
e g
e 3 o
X
1
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NOT

FROM ZERO TO ONE
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NOT

0 ON

OFF

1 OFF

ON

FROM ZERO TO ONE
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CMOS Gates: NAND Gate

S ~i[P2[p1

kLl

@’ _— 1Y
k Y =AB A le
o oo B N2
o 1 o1 <
Ly 1 110

N
E 00

@ 0|1

Qz 10
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CMOS Gates: NAND Gate

S ~i[P2[p1

== $—Y
Y =AB A N1
A BI|Y N

0 01 B N2
0 1|1

ok S
1 11]0

1
ON |OFF |OFF |ON |1
OFF |[ON |ON |OFF |1
1|1 |OFF |OFF |[ON |ON [0 .oy

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <86> "?l‘.FL

FROM ZERO TO ONE




CMOS Gate Structure

-
a )

pMOS
pull-up
network

Inputs | - J

output

: )

nMOS
pull-down
network

o J

v
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NOR Gate

How do you build a three-input NOR gate?

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <88>
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NOR3 Gate

e

Q

O

Q

N

mi
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Other CMOS Gates

How do you build a two-input AND gate?

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <90>
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AND?2 Gate

A —
B_ )O—| >0—Y
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Transmission Gates

e nMOS pass 1’s poorly

EN

e pMOS pass 0’s poorly |
 Transmission gate is a better switch A1 B

— passes both 0 and 1 well _I

EN

e When EN =1, the switch is ON:
— EN =0 and A is connected to B

e When EN =0, the switch is OFF:

— A is not connected to B

FROM ZERO TO ONE
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Pseudo-nMOS Gates

* Replace pull-up network with weak pMQOS
transistor that is always on

e pMOS transistor: pulls output HIGH only
when nMOS network not pulling it LOW

FROM ZERO TO ONE

-
Y
_ 4 N
INputs AMOS
/ pull-down
network
N €7 J e
2
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Pseudo-nMOS NOR4

Pseudo-nMOS Example

FROM ZERO TO ONE
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Gordon Moore, 1929-

e Cofounded Intel In
1968 with Robert
Noyce.

Moore’s Law:
number of transistors
on a computer chip
doubles every year
(observed In 1965)

Since 1975, transistor
counts have doubled

every two years

iftecture, 2™ Edition, 2012
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Moore’s Law

1,000,000,000 1
Core2D
Penfium M uch
100,000,000 - - - ;. _______
Fenhum:i [
Penfium Il _—
10,000,000 4 — - — - = - eI T .
Pentium F"r|:||_.r 8 ] L .
E Pentium Il
5 Intelg8 F‘entl.lm_.
1] 1000000 - - — e
2 Intel326 @ —
0285
E woooo0 T .
BOsE@—
10,000 - - wns -.-,H-:'L' ----------------------------------------------------
-~ 2030
@
4004 @
1,000 4 —
T L i I I L i L
1870 1975 1820 1885 1980 1985 2000 2005
Year

“If the automobile had followed the same development cycle as the
computer, a Rolls-Royce would today cost 5100, get one million
miles to the gallon, and explode once a year . ..”

— Robert Cringley
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 Power = Energy consumed per unit time
— Dynamic power consumption
— Static power consumption

FROM ZERO TO ONE
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Dynamic Power Consumption

 Power to charge transistor gate
capacitances

— Energy required to charge a capacitance, C, to
Vo is CVpp?

— Circuit running at frequency f: transistors
switch (from 1 to O or vice versa) at that
frequency

— Capacitor is charged f/2 times per second
(discharging from 1 to O is free)

* Dynamic power consumption:

-1 2 A
Pd - /ZCVDD f :'ﬁr

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <98> 1:_[q;.'_;|:1
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Static Power Consumption

e Power consumed when no gates are
switching

e Caused by the quiescent supply current, 1,
(also called the leakage current)

e Static power consumption:

p

static = 1poVop

FROM ZERO TO ONE
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Power Consumption Example

e Estimate the power consumption of a
wireless handheld computer

-V =12V
— C=20nF
—f=1GHz
—Ipp =20 MA

FROM ZERO TO ONE

i e
ri- S,
e - e o :_' _.'-:
3 arals,
TR
g _r" ¥
& ’
1

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <100> q;:_;pL



Power Consumption Example

e Estimate the power consumption of a
wireless handheld computer

-V =12V
— C=20nF
—f=1GHz
—Ipp =20 MA

P="%CV,p°f +1,5Vp,
=%(20 nF)(1.2 V)?(1 GHz) +
(20 mA)(1.2 V)
= (14.4 + 0.024) W = 14.4 W

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <101> 1§1=.EFL
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